Не тратьте время и деньги на набор номера телефона.
Закажите обратный звонок
Новости
Образовательное мероприятие "Горизонты Образования" в городе Саратов 04-05 марта 2024 г.

Профориентационное образовательное мероприятие "Горизонты Образования" в  образовательных учреждениях города Саратов

Образовательное мероприятие "Горизонты Образования" в городе Самара 29 февраля-01 марта 2024 г.

Профориентационное образовательное мероприятие "Горизонты Образования" в  образовательных учреждениях города Самара

Образовательное мероприятие "Горизонты Образования" в городе Казань 26-27 февраля 2024 г.

Профориентационное образовательное мероприятие "Горизонты Образования" в  образовательных учреждениях города Казань

Образовательное мероприятие "Горизонты Образования" в городе Кострома16 февраля 2024

Профориентационное образовательное мероприятие "Горизонты Образования" в  образовательных учреждениях города Кострома

Учебные заведения

Недавно добавленные

Санкт-Петербургский горный университет, СПГУ

Медицинский колледж № 3

Центр подготовки «5 из 5» в Санкт-Петербурге

Российский Университет дружбы народов (РУДН)

Северный (Арктический) федеральный университет имени М.В. Ломоносова



Справочник

Теорема Виета

Теорема Виета
Полное описание
Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q


  • Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и xx2. Так, еще не зная, как вычислить корни уравнения x2 – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, а произведение должно равняться –1.
  • Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 * 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями. 



  •